Heterocyclic Mesomeric Betaines. Part 5. ${ }^{1}$ Synthesis and Cycloaddition Reactions of Hetero Derivatives of the 2-Methylene-1,2-dihydro-1,3-phenalenylene Dianion

W. David Ollis * and Stephen P. Stanforth
Department of Chemistry, The University, Sheffield S3 7HF
Christopher A. Ramsden
The Research Laboratories, May and Baker Ltd., Dagenham, Essex, RM10 7XS

Conjugated heterocyclic mesomeric betaines ($5 ; \mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}$) which are isoconjugate with the 2-methylene-1,2-dihydro-1,3-phenalenylene dianion (2) have been synthesized. These heterocyclic mesomeric betaines could not be isolated, but they have been characterized by 1,3-dipolar cycloaddition with olefinic dipolarophiles. Cycloadducts (7a) and (8a) underwent an acid-catalysed retro-Michael reaction.

One of the useful features of our recently proposed classification of heterocyclic mesomeric betaines ${ }^{2}$ is that new types of heterocyclic mesomeric betaines can be devised which are isoconjugate with novel alternant and non-alternant hydrocarbon anions and dianions. In Part $1,{ }^{3}$ we discussed the chemistry of conjugated heterocyclic mesomeric betaines isoconjugate with the alternant phenalen-1-ide anion (1). We now report upon the synthesis and cycloaddition reactions of novel conjugated heterocyclic mesomeric betaines which are isoconjugate with the even alternant 2 -methylene-1,2-dihydro-1,3-phenalenylene dianion (2).

(1)

8-Aminoquinoline and chloroacetyl chloride yielded 8chloroacetamidoquinoline (3a) which was transformed into the salt (4a) by heating at $140^{\circ} \mathrm{C}$. Similarly, reaction of 8 aminoquinoline with the corresponding α-halogeno acid chlorides yielded the salts ($\mathbf{4 b}$) and ($\mathbf{4 c}$) directly. The salts ($\mathbf{4 a}$ c) were yellow ($\lambda_{\text {max. }} 324-330 \mathrm{~nm}$) and showed amide carbonyl absorption ($v_{\mathrm{co}} 1690-1695 \mathrm{~cm}^{-1}$). Treatment of the salts ($\mathbf{4 a - c}$) with triethylamine in aqueous chloroform at room temperature produced an immediate red colouration [bathochromic shift: (4a) ($\left.\lambda_{\text {max. }} 330 \mathrm{~nm} ; \varepsilon 340\right) \longrightarrow(5 a)$ ($\lambda_{\text {max. }} 508 \mathrm{~nm} ; \varepsilon 80$)]. This bathochromic shift induced by triethylamine was attributed to deprotonation yielding a heterocyclic mesomeric betaine. Two possible structures (5) or (6) could have been produced by deprotonation of the cation of the salts (4). One possible structure was that of a conjugated heterocyclic mesomeric betaine represented as the N-ylide (5). Conjugation in this N-ylide (5) extends over the
tricyclic system and this N-ylide is isoconjugate with the even alternant 2-methylene-1,2-dihydro-1,3-phenalenylene dianion (2). Alternatively, the deprotonation products might have been the conjugated mesomeric betaines (6) in which the conjugation is essentially restricted to the bicyclic quinolinium8 -aminide system.

(3)

(5)

(4)

(6)

In formulae (3)-(6): $\mathbf{a}, \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl} ; \mathbf{b}, \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{Br} ; \mathbf{c}$, $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}$

The deprotonation products (5) or (6) could not be isolated and characterized. However, our preference for the N-ylide structure (5) rather than the alternative mesomeric betaine structure (6) was obviously supported by the trapping of the deprotonation products by 1,3-dipolarophiles.

Cycloadditions of the N -Ylides (5).-The novel conjugated heterocyclic N-ylides (5a-c) have been trapped by their generation in the presence of either N-phenylmaleimide, ethyl acrylate, or acrylonitrile.

The 1,3-dipolar cycloaddition between the heterocyclic N ylides $(\mathbf{5 a}-\mathbf{c})$ and N-phenylmaleimide was demonstrably stereospecific because the cycloadducts, which were formed exclusively, were shown to have the endo configuration (7). The endo configuration was established by determining the coupling constant ($J_{8 \mathrm{aab}}$) for the protons $8 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{~b}-\mathrm{H}$. The coupling constants ($J_{8 \mathrm{ab} .8 \mathrm{~b}}$) were calculated using a version $(J=10 \cos \theta)^{4}$ of the Karplus equation and estimates of the torsion angle θ. This procedure gave the indicated coupling

(7)

(8) $X=\mathrm{CO}_{2} \mathrm{Et}$
(9) $X=C N$

In formulae (7)-(9): $\mathbf{a}, \mathbf{R}=\mathbf{H} ; \mathbf{b}, \mathbf{R}=\mathrm{Me} ; \mathbf{c}, \mathbf{R}=\mathrm{Ph}$
constants for the endo configuration (7) ($J_{8 \mathrm{a}, 8 \mathrm{~b}} 8-9 \mathrm{~Hz}$) and the corresponding exo configuration ($J_{8 \mathrm{a}, 8 \mathrm{~b}} 3 \mathrm{~Hz}$). The observed coupling constants for (7a) $\left(J_{8 \mathrm{ab} .8 \mathrm{~b}} 9 \mathrm{~Hz}\right)$, (7b) $\left(J_{8 \mathrm{a}, 8 \mathrm{~b}}\right.$ 8.5 Hz), and (7c) ($J_{8 \mathrm{a}, 8 \mathrm{~b}} 8 \mathrm{~Hz}$) established that these three cycloadducts with N-phenylmaleimide all have the endo configuration (7).

The 1,3-dipolar cycloaddition between the heterocyclic N ylides ($5 \mathbf{a}-\mathbf{c}$) and either ethyl acrylate or acrylonitrile are demonstrably regiospecific and stereospecific. Ethyl acrylate yields the endo-1,3-dipolar cycloadducts ($\mathbf{8 a}-\mathbf{c}$) and acrylonitrile similarly yields the 1,3-dipolar cycloadducts ($\mathbf{9 a - c}$). The regiochemistry of these cycloadditions is firmly established by the observation that $9 \mathrm{a}-\mathrm{H}$ is coupled to two protons only at $9-\mathrm{H}$ and at $1-\mathrm{H}$. The endo configuration of the ethyl acrylate cycloadduct was supported by the chemical shift of the methyl groups of the ethoxycarbonyl groups of the cycloadducts: (8a) [$\left.\delta\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)=0.98\right],(8 \mathrm{~b})\left[\delta\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)=0.93\right]$, and (8c) ($\delta=0.93$). This shift to high field is attributed to positive shielding of these methyl groups by the appositely placed benzene ring.

Acid-catalysed Transformation of the Cycloadducts (7a) and (8a).-The cycloadduct (7a) gave a normal ${ }^{1} \mathrm{H}$ n.m.r. spectrum when its ${ }^{1} \mathrm{H}$ n.m.r. spectrum was determined in $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulphoxide solution. However, when the spectrum of the cycloadduct (7a) was determined in trifluoroacetic acid solution, it was clear that the transformation (7a) $\longrightarrow(10)(X=$

(10)

(11)
$\mathrm{CF}_{3} \mathrm{CO}_{2}$) had occurred. Addition of perchloric acid gave the salt ($10 ; \mathrm{X}=\mathrm{ClO}_{4}$). Similarly, the ethyl acrylate cycloadduct (8a) was smoothly transformed by trifluoracetic acid to the trifluoroacetate salt ($11 ; \mathrm{X}=\mathrm{CF}_{3} \mathrm{CO}_{2}$) and this salt yielded the perchlorate salt ($11 ; \mathrm{X}=\mathrm{ClO}_{4}$).

These reactions are examples of the well-known acidcatalysed retro-Michael reaction of β-amino ketones.
These transformations (7a) $\longrightarrow(\mathbf{1 0})$ and (8a) $\longrightarrow(\mathbf{1 1)}$ are obviously mechanistic analogues of the acid-catalysed cleavage of the 1,3-dipolar cycloadducts of pyridinium methylides recently reported by Tsuge. ${ }^{5.6}$

Experimental

General experimental directions are given in Part $1 .{ }^{3}$
2,3-Dihydro-2-oxo-1H-1,3a λ^{5}-diazaphenalen-3a-ium Chloride (4a).-8-Chloroacetamidoquinoline ${ }^{7}$ (3a) (1.0 g) was heated $(1 \mathrm{~h})$ at $140^{\circ} \mathrm{C}$. The melt rapidly solidified to give the title compound (4a) ($0.95 \mathrm{~g}, 95 \%$) as a yellow, amorphous solid, m.p. $>300^{\circ} \mathrm{C}$ (lit., ${ }^{7} \mathrm{~m} . \mathrm{p}$. not reported) (Found: C, 60.0; H, 4.2; N, 12.6. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.9 ; \mathrm{H}, 4.1 ; \mathrm{N}, 12.7 \%$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 330 \mathrm{~nm}(\varepsilon 340) ; v_{\text {max. }} .(\mathrm{KBr}) 1690 \mathrm{~cm}^{-1} ; \delta(\mathrm{TFA})$ $9.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.17(1 \mathrm{H}, \mathrm{dd}, J 8$ and $6 \mathrm{~Hz}, \mathrm{ArH}), 8.10-$ $7.95(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1 \mathrm{~Hz}, \mathrm{ArH})$, and 6.02 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$). In the cooler regions of the reaction vessel, a small quantity of white material sublimed and was identified as starting material (3a).

2,3-Dihydro-3-methyl-2-oxo-1H-1,3a λ^{5}-diazaphenalen-3a-

 ium Bromide (4b).-To an ice-cooled, stirred solution of 8 -aminoquinoline (2.8 g) in ether (100 ml) was added 2bromopropionyl bromide (3.0 ml) over 5 min . The mixture was stirred (0.5 h) and filtered to give a tan solid (5.02 g). A portion (4.0 g) of this solid was partitioned between a mixture of chloroform (40 ml), triethylamine (4.0 ml), and water (40 ml). After shaking, the organic layer was separated and the aqueous layer was extracted with chloroform $(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water $(2 \times 20 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The resulting brown residue was fractionated by column chromatography (silica gel; hexane-ether, $5: 1$) to give a yellow oil (1.24 g). This oil was kept at room temperature (4 days) and then heated on a steam-bath overnight to give the title compound (4b) (0.98 g, 18%) as a yellow solid, m.p. $296-300^{\circ} \mathrm{C}$ (from methanol) (Found: C, 51.9; H, 4.0; Br, 28.2; N, 9.9. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}$ requires $\mathrm{C}, 51.6 ; \mathrm{H}, 4.0 ; \mathrm{Br}, 28.6 ; \mathrm{N}, 10.0 \%$); $\lambda_{\text {max. }}$. EtOH) 268 and $324 \mathrm{~nm}(\varepsilon 980$ and 640$)$; $v_{\text {max. }}$ (KBr) $1695 \mathrm{~cm}^{-1} ; \delta($ TFA $)$ $9.36\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}, 4-\mathrm{H}\right), 9.16\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8 \mathrm{~Hz}, 6-\mathrm{H}\right), 8.26$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 6\right.$ and $\left.J_{5.6} 8 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.20-8.00(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.91(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1 \mathrm{~Hz}, \mathrm{ArH}), 6.18\left(1 \mathrm{H}, \mathrm{q}, J_{3 \text {,methyl }} 8 \mathrm{~Hz}\right.$, $3-\mathrm{H}$), and $2.14\left(3 \mathrm{H}, \mathrm{d}, J_{3 \text {, methyl }} 8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.2,3-Dihydro-2-oxo-3-phenyl-1 $\mathrm{H}-1,3 \mathrm{a} \lambda^{5}$-diazaphenalen-3a-ium Bromide (4c).-To an ice-cooled, stirred solution of 8-aminoquinoline (2.5 g) and triethylamine (5.0 ml) in tetrahydrofuran $(50 \mathrm{ml})$ was added 1-bromophenylacetyl chloride [freshly prepared from 1-bromophenylacetic acid (5.0 g) and thionyl chloride (10 ml)] over 1 min . The mixture was stirred (0.5 h), filtered, and evaporated to give a red oil. This oil was fractionated by column chromatography (silica gel; hexaneethyl acetate, $5: 1$) to give a yellow oil (4.0 g) which was kept (2 days) at room temperature. Ether ($c a .10 \mathrm{ml}$) was added and the resulting solid was collected to give the title compound ($\mathbf{4 c}$) $(1.55 \mathrm{~g}, 26 \%)$ as a yellow solid.

Evaporation of the filtrate and storage of the residue (1 week) gave additional (4 c) $(0.40 \mathrm{~g}, 7 \%)$. Recrystallization from ethanol gave irregular yellow crystals, m.p. $255-258^{\circ} \mathrm{C}$ (decomp.) (with softening at $170^{\circ} \mathrm{C}$). Alternatively, precipitation from
methanol solution by slow addition of a large volume of ether afforded yellow, irregular plates, m.p. $172-175^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the isomorphs, m.p. $225-228^{\circ} \mathrm{C}$ and m.p. $172-175^{\circ} \mathrm{C}$ were identical (Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 4.0 ; \mathrm{Br}, 23.2 ; \mathrm{N}$, 8.0. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.8 ; \mathrm{H}, 3.9 ; \mathrm{Br}, 23.4 ; \mathrm{N}, 8.2 \%$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 322 \mathrm{~nm}(\varepsilon 570) ; v_{\text {max. }}(\mathrm{KBr}) 1690 \mathrm{~cm}^{-1} ; \delta(\mathrm{TFA}) 9.11$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.96(1 \mathrm{H}, \mathrm{dd}, J 1.5 \mathrm{and} 7 \mathrm{~Hz}$, $\mathrm{ArH}), 7.60-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.11(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$.

Cycloadduct Formation: General Method.-Unless otherwise stated, cycloadducts were prepared as follows. To a rapidly stirred mixture of the appropriate salt ($\mathbf{4 a - c}$) and the $1,3-$ dipolarophile in a mixture of chloroform (10 ml) and water $(10 \mathrm{ml})$ at room temperature was added triethylamine. Stirring was continued $(0.25-1 \mathrm{~h})$ and the organic layer was then separated. The aqueous layer was extracted with chloroform and the combined organic fractions were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the cycloadduct.
(5a $\alpha, 5 \mathrm{~b} \alpha, 8 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)-5 \mathrm{a}, 5 \mathrm{~b}, 8 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-7-phenyl-4,7,10ctriazapentaleno $[1,2,3$-cd $]$ phenalene- $5,6,8(4 \mathrm{H})$-trione ($7 \mathbf{7 a}$). - The salt ($4 \mathbf{a}$) $(0.32 \mathrm{~g}), N$-phenylmaleimide (0.30 g), and triethylamine (0.2 ml) afforded the cycloadduct (7 a) $(0.20 \mathrm{~g}, 39 \%)$ as white needles, m.p. $220^{\circ} \mathrm{C}$ (from methanol-acetone) (Found: C, 70.7; H, 4.4; N, 11.5. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $70.6 ; \mathrm{H}, 4.2$; $\mathrm{N}, 11.7 \%$); $\mathrm{v}_{\text {max }}$ (KBr) $1700 \mathrm{~cm}^{-1} ; \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 10.69(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}), 7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.68(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.55(1 \mathrm{H}, \mathrm{d}$, $\left.J_{9,10} 10 \mathrm{~Hz}, 10-\mathrm{H}\right), 6.38(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.04\left(1 \mathrm{H}, \mathrm{dd}, J_{9.10} 10 \mathrm{~Hz}\right.$ and $\left.J_{8 \mathrm{~b}, 9} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.54\left(1 \mathrm{H}\right.$, dd, $J_{8 \mathrm{a} .8 \mathrm{~b}} 9 \mathrm{~Hz}$ and $J_{8 \mathrm{~b} .9} 5 \mathrm{~Hz}$, $8 \mathrm{~b}-\mathrm{H}), 4.24\left(1 \mathrm{H}, \mathrm{d}, J_{5 \mathrm{a}, 5 \mathrm{~b}} 9 \mathrm{~Hz}, 5 \mathrm{a}-\mathrm{H}\right), 3.88\left(1 \mathrm{H}, \mathrm{t}, J_{5 \mathrm{a}, 5 \mathrm{~b}}\right.$ 9 Hz and $\left.J_{5 \mathrm{~b}, 8 \mathrm{a}} 9 \mathrm{~Hz}, 5 \mathrm{~b}-\mathrm{H}\right)$, and $3.58\left(1 \mathrm{H}, \mathrm{t}, J_{8 \mathrm{a}, 8 \mathrm{~b}} 9 \mathrm{~Hz}\right.$ and $\left.J_{5 \mathrm{~b}, 8 \mathrm{a}} 9 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{H}\right)$.

($5 \mathrm{a} x, 5 \mathrm{~b} x, 8 \mathrm{a} x, 8 \mathrm{~b} x)-5 \mathrm{a}, 5 \mathrm{~b}, 8 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-5a-methyl-7-

 phenyl-4,7,10c-triazapentaleno $[1,2,3-\mathrm{cd}]$ phenalene- $5,6,8(4 \mathrm{H})$ trione (7b).—The salt (4b) $(0.16 \mathrm{~g}), \mathrm{N}$-phenylmaleimide (0.16 g), and triethylamine (0.10 ml) afforded the cycloadduct (7b) ($0.15 \mathrm{~g}, 66 \%$) as cream needles, m.p. $144-148{ }^{\circ} \mathrm{C}$ (decomp.) from ethanol) (Found: C, 70.6; H, 4.5; N, 11.6; $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 11.8 \%$); $\mathrm{v}_{\text {max. }}$. $(\mathrm{KBr}) 1715,1680$, 1480 , and $1395 \mathrm{~cm}^{-1} ; \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 10.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $7.32-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.66-6.60(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.50(1 \mathrm{H}$, $\mathrm{dd}, J_{9,10} 10 \mathrm{~Hz}$ and $\left.J_{8 \mathrm{~b}, 10} 1 \mathrm{~Hz}, 10-\mathrm{H}\right), 6.40-6.34(2 \mathrm{H}, \mathrm{m}), 5.97$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{9.10} 10 \mathrm{~Hz}\right.$ and $\left.J_{8 \mathrm{~b} .9} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.90\left(1 \mathrm{H}\right.$, ddd, $J_{8 \mathrm{~b} .10} 1$ $\mathrm{Hz}, J_{8 \mathrm{~b}, 9} 5 \mathrm{~Hz}$, and $\left.J_{8 \mathrm{a}, 8 \mathrm{~b}} 7.5 \mathrm{~Hz}, 8 \mathrm{~b}-\mathrm{H}\right), 3.70\left(1 \mathrm{H}, \mathrm{t}, J_{8 \mathrm{a}, 8 \mathrm{~b}} 7.5 \mathrm{~Hz}\right.$ and $\left.J_{5 \mathrm{~b}, 8 \mathrm{a}} 7.5 \mathrm{~Hz}, 8 \mathrm{a}-\mathrm{H}\right), 3.63\left(1 \mathrm{H}, \mathrm{d}, J_{5 \mathrm{~b}, 8 \mathrm{a}} 7.5 \mathrm{~Hz}, 5 \mathrm{~b}-\mathrm{H}\right)$, and $1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.(5a $\alpha, 5 \mathrm{~b} \alpha, 8 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha)$ - $5 \mathrm{a}, 5 \mathrm{~b}, 8 \mathrm{a}, 8 \mathrm{~b}-$ Tetrahydro-5a,7-diphenyl$4,7,10 \mathrm{c}$-triazapentaleno $[1,2,3$-cd $]$ phenalene- $5,6,8(4 \mathrm{H})$-trione $(7 \mathrm{c})$.-The salt (4 c) $(0.25 \mathrm{~g}), N$-phenylmaleimide $(0.30 \mathrm{~g})$, and triethylamine $(0.20 \mathrm{ml})$ afforded the cycloadduct $(7 \mathbf{c})$ as a solid in the reaction mixture and this was filtered off ($0.11 \mathrm{~g}, 32 \%$). It was obtained as cream needles, m.p. $267-270^{\circ} \mathrm{C}$ (from ethanol-acetone) (Found: C, 74.3; H, 4.8; N, 9.5\%; $M^{+}, 443$. $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}, 4.4 ; \mathrm{N}, 9.7 \% ; M, 443$); $\nu_{\text {max. }}(\mathrm{KBr}) 1705$ and $1480 \mathrm{~cm}^{-1} ; \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 8.33(1 \mathrm{H}$, s, NH), $7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50-7.30(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.80-$ $6.65(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.56\left(1 \mathrm{H}, \mathrm{d}, J_{9.10} 10 \mathrm{~Hz}, 10-\mathrm{H}\right), 6.50-6.42$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.88\left(1 \mathrm{H}, \mathrm{dd}, J_{9.10} 10 \mathrm{~Hz}\right.$ and $\left.J_{9.8 \mathrm{~b}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right)$, $4.64\left(1 \mathrm{H}, \mathrm{d}, J_{5 \mathrm{~b}, 8 \mathrm{a}} 8 \mathrm{~Hz}, 5 \mathrm{~b}-\mathrm{H}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J_{8 \mathrm{a} .8 \mathrm{~b}} 8 \mathrm{~Hz}\right.$ and $\left.J_{8 \mathrm{~b}, 9} 5 \mathrm{~Hz}, 8 \mathrm{~b}-\mathrm{H}\right)$, and $3.49\left(1 \mathrm{H}, \mathrm{t}, J_{8 \mathrm{a}, 8 \mathrm{~b}} 8 \mathrm{~Hz}\right.$ and $J_{5 \mathrm{~b}, 8 \mathrm{a}} 8 \mathrm{~Hz}$, $8 \mathrm{a}-\mathrm{H})$.
(1ß,2ax,9ax)-Ethyl 1,2,2a,3,4,9a-Hexahydro-3-oxo-4,9b-diazacyclopenta $[\mathrm{cd}]$ phenalene-1-carboxylate (8a).-The salt (4a) $(0.38 \mathrm{~g})$, ethyl acrylate (0.30 ml), and triethylamine $(0.30 \mathrm{ml})$
afforded the cycloadduct (8a) $(0.20 \mathrm{~g}, 41 \%)$ as orange needles, m.p. $170-173{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 67.4; H, $5.5 ; \mathrm{N}$, $9.8 \% ; M^{+\cdot}, 284 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 67.6; H,5.7; N, 9.9%; M, 284); $v_{\text {max }} .(\mathrm{KBr}) 1725$ and $1675 \mathrm{~cm}^{-1} ; \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $10.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.70-6.45(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}+8-\mathrm{H}), 5.81$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 10 \mathrm{~Hz}\right.$ and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.41\left(1 \mathrm{H}, \mathrm{dd}, J_{9,9 \mathrm{a}} 5\right.$ Hz and $\left.J_{1.9 \mathrm{a}} 8 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}\right), 3.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.2 \mathrm{a}-\mathrm{H}\right)$, $3.08(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.33(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.91(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, and $0.98\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
(1 $1,2 \mathrm{a} \alpha, 9 \mathrm{a} \alpha)$-Ethyl 1,2,2a,3,4,9a-Hexahydro-2a-methyl-3-oxo-4,9b-diazacyclopenta [cd]phenalene-1-carboxylate (8b).-The salt (4b) $(0.18 \mathrm{~g})$, ethyl acrylate (0.10 ml), and triethylamine $(0.10 \mathrm{ml})$ afforded a semisolid $(0.17 \mathrm{~g})$. Trituration with ether afforded the crude cycloadduct (8b) ($0.08 \mathrm{~g}, 42 \%$). Preparative thick layer chromatography (silica gel; ether) gave the cycloadduct ($\mathbf{8 b}$) as pale orange prisms, m.p. $167-170^{\circ} \mathrm{C}$ [Found: m / z 296.1136. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}(M-2 \mathrm{H})$ requires m / z 296.1161]; $v_{\text {max. }} .(\mathrm{KBr}) 1725$ and $1675 \mathrm{~cm}^{-1} ; \delta 9.11(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 6.53(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.42\left(1 \mathrm{H}, \mathrm{d}, J_{8.9} 10 \mathrm{~Hz}, 8-\mathrm{H}\right), 5.76(1$ $\mathrm{H}, \mathrm{dd}, J_{8.9} 10 \mathrm{~Hz}$ and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J_{9.9 \mathrm{a}} 5\right.$ Hz and $\left.J_{1.9 \mathrm{a}} 6 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}\right), 3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.09(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 2.51\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5 \mathrm{~Hz}\right.$ and $\left.J_{2.2} .13 \mathrm{~Hz}, 2-\mathrm{H}\right), 2.12(1$ $\mathrm{H}, \mathrm{dd}, J_{1,2} 9 \mathrm{~Hz}$ and $\left.J_{2.2} \cdot 13 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
($1 \beta, 2 \mathrm{a} \alpha, 9 \mathrm{a} \alpha$)-Ethyl 1,2,2a,3,4,9a-Hexahydro-3-oxo-2a-phenyl-4,9b-diazacyclopenta[cd]phenalene-1-carboxylate (8c).-The salt (4 c) $(0.14 \mathrm{~g})$, ethyl acrylate $(0.10 \mathrm{ml})$, and triethylamine $(0.10 \mathrm{ml})$ afforded a yellow oil $(0.14 \mathrm{~g})$ which was triturated with ethanol to give the cycloadduct ($\mathbf{8 c}$) $(0.07 \mathrm{~g}, 47 \%)$ as pale orange rhombs, m.p. $183-186^{\circ} \mathrm{C}$ (from ethanol) [Found: C, $73.5 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.8 ; m / z 260$ (M - ethyl acrylate). $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 73.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.8 \% ; M, 360\right]$; $v_{\text {max. }}(\mathrm{KBr}) 1720$ and $1680 \mathrm{~cm}^{-1} ; \delta 9.16(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.69(2$ $\mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 7.4-7.1(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.7-6.5(2 \mathrm{H}, \mathrm{m}$, ArH), $6.46\left(1 \mathrm{H}, \mathrm{d}, J_{8.9} 11 \mathrm{~Hz}, 8-\mathrm{H}\right), 5.66\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 11 \mathrm{~Hz}\right.$ and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.37(1 \mathrm{H}, \mathrm{m}, 9 \mathrm{a}-\mathrm{H}), 3.92(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.95(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.81(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.27(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right)$, and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

1,2,2a,3,4,9a-Hexahydro-3-oxo-4,9b-diazacyclopenta $[\mathrm{cd}]$ -phenalene-1-carbonitrile (9a).-The salt (4a) (0.33 g), acrylonitrile $(0.20 \mathrm{ml})$, and triethylamine $(0.20 \mathrm{ml})$ afforded the cycloadduct (9a) ($0.27 \mathrm{~g}, 75 \%$) as cream needles, m.p. 203$205^{\circ} \mathrm{C}$ (decomp.) (from ethanol) (Found: C, 71.1; H, 4.6; N, $17.6 \% ; M^{+}$, 237. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 4.7$; $\mathrm{N}, 17.1 \% ; M, 237) ; v_{\text {max. }}(\mathrm{KBr}) 2230$ and $1675 \mathrm{~cm}^{-1}$; $\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 10.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.80-6.60(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}+8-\mathrm{H}), 5.94\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 10 \mathrm{~Hz}\right.$ and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right)$, $4.27\left(1 \mathrm{H}\right.$, ddd, $J_{1.9 \mathrm{a}} 8 \mathrm{~Hz}, J_{2.9 \mathrm{a}} 1 \mathrm{~Hz}$, and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}\right)$, $3.84(1 \mathrm{H}, \mathrm{dd}, J 7 \mathrm{~Hz}$ and $10 \mathrm{~Hz}, 2 \mathrm{a}-\mathrm{H}), 3.43(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.63(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, and $1.67\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$.

1,2,2a,3,4,9a-Hexahydro-2a-methyl-3-oxo-4,9b-diazacyclo-

 penta[cd]phenalene-1-carbonitrile (9b).-The salt (4b) (0.20 g), acrylonitrile (0.10 ml), and triethylamine $(0.10 \mathrm{ml})$ afforded the cycloadduct ($\mathbf{9 b}$) ($0.15 \mathrm{~g}, 83 \%$) as pale orange plates, m.p. 175$176^{\circ} \mathrm{C}$ (decomp.) (from ethanol-ether) [Found: C, $71.5 ; \mathrm{H}$, $5.1 ; \mathrm{N}, 16.6 \% ; m / z 250(M-1)$ and $197(M-$ acrylonitrile $)$. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\left.\mathrm{C}, 71.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 16.7 \% ; M, 251\right]$; $v_{\text {max. }}(\mathrm{K} \mathrm{Br}) 2130$ and $1675 \mathrm{~cm}^{-1} ; \delta 9.86(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.76$ $6.66(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}+8-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{dd}, J 8$ and $2 \mathrm{~Hz}, \mathrm{ArH})$, $5.87\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 10 \mathrm{~Hz}\right.$ and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9-\mathrm{H}\right), 4.69(1 \mathrm{H}$, ddd, $J_{1.9 \mathrm{a}} 7 \mathrm{~Hz}, J_{2.9 \mathrm{a}} 1 \mathrm{~Hz}$, and $\left.J_{9.9 \mathrm{a}} 5 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}\right), 3.22(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.48\left(1 \mathrm{H}, \mathrm{dd}, J_{2,2} .13 \mathrm{~Hz}\right.$ and $\left.J_{1,2} 9 \mathrm{~Hz}, 2-\mathrm{H}\right), 2.25\left(1 \mathrm{H}, \mathrm{dd}, J_{2,2^{\prime}}\right.$ 13 Hz and $\left.J_{1,2^{\prime}} 5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, and $1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.1,2,2a,3,4,9a-Hexahydro-3-oxo-2a-phenyl-4,9b-diazacyclopenta $[\mathrm{cd}]$ phenalene-1-carbonitrile (9 c). -The salt (9 c) (0.16 g), acrylonitrile $(0.10 \mathrm{ml})$, and triethylamine $(0.10 \mathrm{ml})$ afforded the crude cycloadduct (9 c) $(0.14 \mathrm{~g}, 92 \%)$. Preparative thick layer chromatography (silica gel; ether) afforded the cycloadduct (9c) as a light \tan solid, m.p. $120-123^{\circ} \mathrm{C}$ [Found: m / z 260.0951. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ ($M-$ acrylonitrile) requires M, 260.0949]; $v_{\text {max. }}$ 3390,2220 , and $1685 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 3.37(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.63$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.33 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.80-6.50(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $8-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{dd}, J 9$ and $5 \mathrm{~Hz}, 9-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}, J 6$ and $5 \mathrm{~Hz}, 9 \mathrm{a}-\mathrm{H}), 3.21(1 \mathrm{H}$, dd, $J 13$ and $9 \mathrm{~Hz}, 2-\mathrm{H}), 2.97(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H})$, and $2.42\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$.

Acid-catalysed Transformation of the Cycloadducts (7a) and (8a)- $\left(3 \alpha, 3^{\prime} \alpha\right)$-3-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2,3-di-hydro-2-oxo-1H-1,3a λ^{5}-diazaphenalen-3a-ium Perchlorate (10; $\mathrm{X}=\mathrm{ClO}_{4}$).-The cycloadduct (7a) (0.10 g) was added to trifluoroacetic acid (1.0 ml). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the solution revealed the formation of the salt $\left(10 ; X=\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$; δ (TFA) $9.53\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}, 4-\mathrm{H}\right), 9.21\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 9 \mathrm{~Hz}\right.$, $6-\mathrm{H}), 8.27\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 6 \mathrm{~Hz}\right.$ and $\left.J_{5.6} 9 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.20-7.88$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.78$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{ABM} X$ system, $\left.J_{\mathrm{MX}} 5 \mathrm{~Hz}, 3-\mathrm{H}\right), 4.31(1 \mathrm{H}, \mathrm{m}, \mathrm{AB} M \mathrm{X}$ system, $\left.3^{\prime}-\mathrm{H}\right)$, and $3.25\left(2 \mathrm{H}, A B M X\right.$ system, $\delta_{\mathrm{A}} 3.33$ and δ_{B} $3.12, J_{\mathrm{AB}} 20 \mathrm{~Hz}, J_{\mathrm{AM}} 9 \mathrm{~Hz}$, and $J_{\mathrm{BM}} 5 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$). Perchloric acid (70%; 10 drops) was added to the solution followed by ether (40 ml). The resulting precipitate was collected to give the perchlorate $\left(10 ; \mathrm{X}=\mathrm{ClO}_{4}\right)(0.10 \mathrm{~g}, 77 \%)$ as a yellow solid, m.p. $260-262^{\circ} \mathrm{C}$ [Found: $m / z \quad 357.1138 . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ $\left(M-\mathrm{HClO}_{4}\right)$ requires m / z 357.1113]; $v_{\text {max. }}(\mathrm{KBr}) 1705$, $1545,1430,1390,1195,1140,1110$, and $1080 \mathrm{~cm}^{-1}$; $\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 12.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.59\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}, 4-\right.$ H), $9.31\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8 \mathrm{~Hz}, 6-\mathrm{H}\right), 8.30\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 6 \mathrm{~Hz}\right.$ and $\left.J_{5.6} 8 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.10(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 7.9\left(1 \mathrm{H}, \mathrm{t}, J_{8.9}\right.$ 8 Hz and $\left.J_{7.8} 8 \mathrm{~Hz}, 8-\mathrm{H}\right), 7.64(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 7.60-7.40$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.75(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.38\left(1 \mathrm{H}, \mathrm{d}, J_{3,3^{3}} 5 \mathrm{~Hz}\right.$, $3-\mathrm{H}), 3.98\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, and $2.88\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\delta_{\mathrm{A}} 3.07$ and $\left.\delta_{\mathrm{B}} 2.75, J_{\mathrm{AB}} 18 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right) ; \delta(\mathrm{TFA}) 9.46\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}\right.$, $4-\mathrm{H}), 9.07\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8 \mathrm{~Hz}, 6-\mathrm{H}\right), 8.19\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 8 \mathrm{~Hz}\right.$ and $\left.J_{4.5} 6 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.10-7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.83(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, ArH), $7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.72(1 \mathrm{H}, \mathrm{d}$, $\left.J_{3.3^{\prime}} 5 \mathrm{~Hz}, 3-\mathrm{H}\right), 4.31\left(1 \mathrm{H}, \mathrm{dt}, J_{3.3^{\prime}} 5 \mathrm{~Hz}\right.$ and $\left.J_{3^{\prime} .4^{\prime}} 9 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, and $3.24\left(2 \mathrm{H}, \mathrm{AB}\right.$ system, $\delta_{\mathrm{A}} 3.33$ and $\left.\delta_{\mathrm{B}} 3.14, J_{\mathrm{AB}} 18 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right)$.

3-(2-Ethoxycarbonylethyl)-2,3-dihydro-2-oxo-1 $\mathrm{H}-1,3 \mathrm{a} \lambda^{5}$ -diazaphenalen-3a-ium Perchlorate $\left(11 ; \mathrm{X}=\mathrm{ClO}_{4}\right)$.-The cyclo-
adduct ($8 \mathbf{a}$) $(0.08 \mathrm{~g})$ was added to trifluoroacetic acid $(1.0 \mathrm{ml})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the solution revealed formation of the salt ($11 ; \mathrm{X}=\mathrm{CF}_{3} \mathrm{CO}_{2}$); $\delta(\mathrm{TFA}) 9.36\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}\right.$, $4-\mathrm{H}), 9.18\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 9 \mathrm{~Hz}, 6-\mathrm{H}\right), 8.25\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 6 \mathrm{~Hz}\right.$ and $\left.J_{5.6} 9 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.88(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, ArH), $6.08\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime}, 3} 6 \mathrm{~Hz}, 3-\mathrm{H}\right), 4.27(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.0-2.6\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, and $1.32(3 \mathrm{H}, \mathrm{t}, J$ $8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). Perchloric acid ($70 \% ; 10$ drops) was added to the solution followed by ether (30 ml) to give a yellow gum. The supernatant liquid was decanted and the gum was dissolved in acetonitrile (2 ml) and the solution was filtered. Ether was then added to the filtrate to precipitate the perchlorate $\left(11 ; \mathrm{X}=\mathrm{ClO}_{4}\right)(0.07 \mathrm{~g}, 64 \%)$ as a yellow solid, m.p. $135-138^{\circ} \mathrm{C}$ (Found: C, $50.0 ; \mathrm{H}, 4.6 ; \mathrm{Cl}, 9.1 ; \mathrm{N}, 7.5$. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 49.9 ; \mathrm{H}, 4.5 ; \mathrm{Cl}, 9.2 ; \mathrm{N}, 7.3 \%$; $\nu_{\text {max. }}(\mathrm{KBr}) 3000,1740$, and $1695 \mathrm{~cm}^{-1} ; \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 10.30$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.49\left(1 \mathrm{H}, \mathrm{d}, J_{4.5} 6 \mathrm{~Hz}, 4-\mathrm{H}\right), 9.28\left(1 \mathrm{H}, \mathrm{d}, J_{5.6}\right.$ $9 \mathrm{~Hz}, 6-\mathrm{H}), 8.32\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 9 \mathrm{~Hz}\right.$ and $\left.J_{4.5} 6 \mathrm{~Hz}, 5-\mathrm{H}\right), 8.1-$ $7.9(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 5.89(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.50\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, and $1.07\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Acknowledgements

We warmly thank the S.E.R.C. and May and Baker Ltd. for the award of a CASE Research Studentship (to S. P. S.).

References

1 Part 4, W. D. Ollis, C. A. Ramsden, and S. P. Stanforth, J. Chem. Soc., Perkin Trans. 1, preceding paper.
2 W. D. Ollis, C. A. Ramsden, and S. P. Stanforth, Tetrahedron, 1985, 41, 2239.

3 Part 1, W. D. Ollis, C. A. Ramsden, and S. P. Stanforth, J. Chem. Soc., Perkin Trans. 1, 1989, 945.
4 R. J. Abraham and P. Loftus, 'Proton and Carbon-13 NMR Spectroscopy,' Heyden, London, 1978.
5 O. Tsuge, S. Kanemasa, S. Kuraoka, and S. Takenaka, Chem. Lett., 1984, 281.
6 O. Tsuge, S. Kanemasa, S. Takenaka, and S. Kuraoka, Chem. Lett., 1984, 465.
7 J. Hazlewood, G. K. Hughes, and F. Lions, J. Proc. Roy. Soc. N.S. Wales, 1938, 71, 465 (Chem. Abstr., 1939, 33, 611).

